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A magic determinant is a Karle-Hauptman determinant in which the phases of reflexions forming the 
elements are expressed in magic-integer representation. By means of appropriate algorithms, which are 
described, magic determinants may be found, up to order 30, which have a high content of large E's. The 
value of the magic determinant depends on the values of the independent variables (usually two) in terms of 
which the magic-integer-represented phases are defined. Maxima are sought in a map of magic-determinant 
values and these give trial values for the constituent phases. These phases may be refined by maximizing one 
or more of the largest eigenvalues of the matrix of elements. Applications to five different structures are 
described and the usefulness and limitations of the magic-determinant concept are discussed. It is concluded 
that Karle-Hauptman determinants, chosen in the way described, provide a very discriminating figure of 
merit. However, the structure factors they contain usually provide a rather poor base for subsequent phase 
development and this limits the usefulness of the magic-determinant approach. 

Introduction 

Phase-determining methods based on magic integers 
were described in papers VII and VIII of  this series 
(White & Woolfson, 1975; Declercq, Germain & 
Woolfson, 1975). Further developments in the use of 
magic integers were described in paper X where a 

general overview of the M A G L I N  system was presen- 
ted (Woolfson, 1977). A theory of  magic integers and a 
critical examination of the use of magic integers in 
phase determination were given by Main (1977, 1978) 
in papers XI and XII  respectively. This paper describes 
in detail the part of MA GLIN which makes use of the 
properties of  Ka r l e -Haup tman  determinants. Magic 
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integers are used to represent the phases of deter- 
minant elements creating the so-called 'magic deter- 
minants'. The discriminating power of the Karle- 
Hauptman determinant, combined with magic-integer 
representation, enables large starting sets of reflexions 
to be phased for use in other phase-development 
procedures. 

Karle-Hauptman determinants 

Karle & Hauptman (1950) showed that for a positive 
electron density the determinant: 

D,n = 

Eo Eh, Eh, ... Eh~ , 

E~, E o Eh~ -h, -'" Eh.., h, 

E~ fh_h2 E o "'" fh.~_, h~ 

: ." • . . .  • 

EI~.., Eh~-hm_, Eh~ h., -'- Eo 

> 0 ,  

where h~, h2... h m_ 1 correspond to different indices but 
may be symmetry-related reflexions. Since Eh = E~ (* 
= complex conjugate), the array of structure factors is 
an Hermitian matrix and the value of the determinant is 
therefore real. Uh may replace Eh in the determinant 
with U 0 (--- 1) in place of E o (~_ N ~/2 where N is the 
number of atoms in the unit cell). Karle & Hauptman 
(1950) and Goedkoop (1958) showed that for m > N, 
D,,, ---- 0. 

If each column of the determinant is multiplied by 
the complex conjugate of the leading element and the 
same is done for each row, then each element of the 
determinant is converted into a structure invariant of 
the f o r m  EhE_hEh,_h/ The determinant as a whole 
has been multiplied by E~ 1-l~'=~lEh, I 2 and so it is clear 
that D,,, is itself a structure invariant (Kitaigorodsky, 
1961). Since the maximum value of the determinant of 
an Hermitian matrix occurs when the phase of each 
element is zero, it follows that if the magnitudes of all 
elements are large, the set of phases that makes all the 
triple-phase invariants close to zero will maximize the 
determinant. 

From the maximum-determinant rule (de Rango, 
1969; Tsoucaris, 1970) it may be inferred that for a 
determinant of order less than N, the most probable set 
of phases for the included E's, assuming they are large 
in magnitude, is that which gives the determinant a 
maximum value. The present work is based on the 
properties of Karle-Hauptman determinants where 
magic integers are used to represent the phases of deter- 
minant elements. 

Selection of determinants 

Requirements 

Suitable determinants should contain reflexions of 
large I Ehl that occur repeatedly. Messager & Tsoucaris 
(1972) have shown that for a determinant of order 4 the 
larger the IEht 'S in the top row, the higher will be bEhl 
over the whole determinant. These findings may be 
extrapolated to higher-order determinants but no proof 
exists in such cases. Two approaches have been tried to 
obtain suitable determinants. 

Method 1 

(a) A convergence map is produced for the structure 
by MULTAN.  

(b) A top row is selected to contain origin-defining 
and enantiomorph-fixing reflexions and some large 
I Ehl'S from near the foot of the convergence map. 

(c) The content of the determinant is then examined 
for the number of large I Ehl's contained. 

Stages (b) and (c) are repeated with various 
selections of large I Ehl's until a satisfactory matrix is 
obtained that contains as many large IEhl's as possible 
occurring repeatedly. 

Method 2 

The original algorithm for this procedure was 
developed and programmed by Main (1975). Some 
modifications have been made to the original process 
and the steps of the current version are described 
below. 

(a) A large Karle-Hauptman matrix is constructed 
with the top row chosen from all available large I Ehl'S 
using all symmetry-related reflexions including Friedel 
opposites. (The central region of reciprocal space is 
used with the aim of reducing the occurrence of 
reflexions outside the data set which are given zero 
magnitudes.) 

(b) The row and column with the smallest ~ IEhl 
are eliminated. 

(c) Step (b) is repeated until IEhl over the matrix is 
greater than some preselected minimum value. 

(d) A second large matrix is then constructed as in 
(a) but with the top row taken fr6m reflexions which 
appear frequently in the (c) matrix. 

(e) Steps (b) and (c) are repeated until a matrix of 
desired order (often 100) is obtained. 

( f )  A figure of merit is computed for each column. 
Two types have been used successfully: either IEhl or 
IIEhl 2 -- 11 divided by the number of unique strong 
reflexions. 

(g) The column and corresponding row with the 
lowest figure of merit are eliminated unless the column 
contains less than or equal to k known strong reflexions 
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(k is usually 1 or 2) in the reduced matrix, in which case 
it becomes a column in the starting matrix. 

(h) The procedure is repeated from step ( f )  until 
only the starting matrix remains. The elimination 
procedure ensures that the origin and enantiomorph are 
still defined by the strong reflexions contained in the 
starting matrix. 

It has become clear that the selection of suitable 
matrices by this method for use with magic deter- 
minants or in other phase-development procedures is 
very structure dependent. In particular, any bias or 
slight pseudosymmetry in the data is amplified by the 
selection procedure and easily leads to the exclusion of 
whole classes of reflexions from the order 100 matrix of 
step (e). It has also been found that it is difficult to 
obtain small starting matrices without both extensive 
adjustment to the program control parameters and 
repeated trials. No general principle has emerged that 
works in most cases. 

Nevertheless, suitable large matrices for several 
structures have been selected automatically by this 
method and the results obtained are discussed in a later 
section. 

Representation of  phases by magic integers 

A typical element of an Hermitian matrix IEhl exp (itph) 
can be expressed in magic-integer form as 
IEhl exp(2ztinx) where 0 < x < 1 and n is one integer 
of a magic-integer sequence. For example, the phases of 
the six independent reflexions in a D 4 determinant may 
be represented (in cycles) by 

0 3x 3y 4x 

- 3 x  0 5x 4y 

- 3 y  - 5 x  0 5y 

- 4 x  - 4 y  - 5 y  0 

The value of the determinant with phases so expressed 
is D4(x,y ). To find the most probable set of phases in a 
determinant the following procedure is used. 

(1) Independent unknown phases in a D,,, deter- 
minant are represented in magic-integer notation with 
origin and enantiomorph phases given fixed values. 

(2) For x and y as the independent variables D,,, is 
computed for a grid of points covering the x,y domain. 
Intervals of 1/(4 × maximum integer) have been found 
sufficient. 

(3) Values of (x,y) corresponding to peaks in the 
map are recorded. 

(4) Each peak is translated to the phases that it 
represents, giving a number of possible phase sets. 

Step 1 

The magic-integer sequences used to represent 
phases have been optimized for 'a uniform distribution 
of errors applying the rules given by Main (1977) in 
paper XI of this series. The grid interval used at present 
is ~ in x and y and this puts an upper limit of about 25 
on the highest integer in a magic-integer sequence. This 
in turn restricts the maximum length of an 'efficient' 
sequence to about 12. The r.m.s, errors for the magic- 
integer sequences used in this work are shown in Table 
1. 

When the number of phases to which magic integers 
are to be assigned exceeds 24, magic-integer symbols 
are allocated to the reflexions using the p r imary -  
secondary concept developed in paper VIII of  this 
series (Declercq, Germain & Woolfson, 1975). An 
algorithm has been developed to select which reflexions 
it is most useful to place in the primary set. The 
procedure has been adapted from the algorithm 
described by Main (1978) in paper XII of  this series for 
selecting primary sets that have a large number of 
associated secondary reflexions. 

In this adaptation, the primary set is chosen such 
that all reflexions in the determinant other than primary 
reflexions can be defined by a triple-phase invariant 

Table 1. Magic-integer sequences used to represent phases in magic determinants 
The r.m.s, error was determined using 500 trials and a Monte Carlo approach. 

Length Sequence 

1 1 0.0 
2 2 3 20.4 
3 4 6 7 26-2 
4 8 12 14 15 29.5 
5 12 17 20 22 23 34.4 
6 13 18 21 23 24 25 40.5 
7 13 17 20 22 23 24 25 45.9 
8 15 19 22 24 26 27 28 29 49.2 
9 14 17 19 21 23 24 25 26 27 53.3 

10 15 18 20 22 24 25 26 27 28 29 55.8 
11 16 19 21 23 25 26 27 28 29 30 31 57.9 
12 15 17 19 21 22 23 24 25 26 27 28 29 60.5 

Lower bound (o) r.m.s, error (o) 

0-0 
20.4 
26.6 
29.9 
35.9 
41.6 
47.9 
50-8 
55-2 
57.6 
59.7 
62.0 
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involving two members of the primary set. With the 
above restriction the primary set is selected as in Main's  
procedure. As Kar le -Hauptman  determinants have a 
proportion of reflexions with small magnitudes, care is 
taken to avoid the inclusion of such reflexions in the 
primary set. 

Once the primary set has been selected, secondaries 
are then defined by the strongest available triple-phase 
invariant but with the following two restrictions. 
Firstly, no secondary reflexion may be defined by two 
origin- and enantiomorph-defining reflexions which 
have fixed phase values. Secondly, wherever possible, 
different pairs of primaries are used to define the 
secondaries. These two restrictions allow maximum 
variability to the phase representations for different 
secondaries in the determinant. 

The dominant variable term in the values of the 
Kar le -Hauptman  determinants of low order used in 
this work arises from the triple-phase invariants 
involving the large magnitudes contained within the 
determinant. Quartets and higher-order invariants do 
contribute to the value of the determinant but are 
reduced by a factor IEhl/IEol for every additional 
phase contained in the invariant. 

It is therefore essential to keep the size of the magic 
integers generated for the triple-phase invariants as 
small as possible. To achieve this, a correlation 
procedure is employed that takes account of the 
magnitude and sign of all the interactions of the 
primary reflexions with each other in these invariants. 
A triple-phase invariant of the form 

~01 + (P2 "F (if3 -t- b ~_ 0 

is represented in the extreme case (three secondary 
phases) in terms of primaries alone by the equation 

+ Pz + P2 +- P3 + ]94 + P5 + P6 + b' _~ 0 

where 
q~l = + Pl  + P2 + bl 

tP2 = + P3 + P4 + b2 

~03 = + P5 + P6 + b3 

b' = b + b~ + b 2 + b 3. 

In this representation an 'interaction' is defined by the 
presence of two primaries in a triple-phase invariant 
and is described as positive if the two primaries have 
the same sign. Clearly, positive interactions between 
primaries represented in magic-integer notation by the 
same variable will generate large integers and this type 
of interaction must therefore be avoided. This can be 
done by separating the primaries into two sets and by 
reversing the signs of some of the magic integers within 
a set. The following procedure has been adopted to 
minimize positive interactions and hence to keep the 
integers defining the triple-phase invariants to a 
minimum. 

(1) Those triple-phase invariants not defining secon- 
dary reflexions are searched for interactions between 
the primary reflexions, the accumulated interactions 
being displayed in the form of a matrix (see Table 2). 
The numbers relate to the detailed example for litho- 
cholic acid (Arora, Germain & Declercq, 1976) given 
later in this paper. The upper triangle contains positive 
interactions and the lower triangle negative inter- 
actions for later use. Each interaction is given a weight 
proportional to the r value of the invariant in which it 
occurs, where 

2 IEhEh, Eh_h,. r=E--'-~o 
(2) Positive and negative interactions are then added 

together (see Table 3) and the primary reflexions 
divided into two sets so as to minimize the total inter- 
action between primaries in the same set. This is carried 

Table 2. Matr i x  o f  the interactions between pr imary  reflexions in triple-phase invariants 

PI P2 P3 "°4 P5 P6 P7 P8 P9 PIo Ptl PI2 PI3 

PI 60 0 18 0 0 0 7 0 0 9 2 0 
P2 0 17 0 12 0 3 0 0 13 2 2 10 
P3 65 70 33 0 0 0 0 6 30 27 35 1 
P, 0 41 6 0 7 0 20 15 12 0 8 8 
Ps 22 0 49 30 0 0 6 0 0 0 0 0 
P6 0 31 42 22 0 (4) 12 0 0 7 3 4 0 
P7 2 0 8 47 17 18 0 0 0 0 4 0 
P8 0 42 32 0 0 14 0 0 0 11 0 0 
P9 0 0 5 15 6 0 15 28 0 0 0 0 
P'0 0 0 0 0 0 0 0 13 5 0 0 0 
Pll 0 26 1 30 4 0 17 0 0 0 29 0 
PI2 0 0 0 0 0 0 0 0 0 6 0 6 
Pt3 1 0 0 0 0 0 8 11 14 6 28 0 

Negative 
interactions 

Positive 
interactions 
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Table 3. Matrix o f  combined interactions of  primary 
reflexions in the triple-phase invariants 

P~ P2 P3 P, P5 P6 P7 Ps P9 P~o Ptt P~2 P~J 
Pi 60 65 18 22 0 2 7 0 0 9 2 1 
P2 i~) 41 12 31 3 42 0 13 28 2 10 
Ps 39 49 42 8 32 11 30 28 35 1 
P4 30 29 47 20 30 12 30 8 8 
P~ 0 17 6 6 0 4 0 0 
P6 30 14 0 7 3 4 0 
P7 0 15 0 17 4 8 
Ps 28 13 11 0 11 
P9 5 0 0 14 
P~0 0 6 6 
P~ 29 28 
P~2 6 
P~3 

out using the following algorithm. (a) The largest total  
interact ion between two primaries, P2-P3, is found and 
the primaries involved assigned to different sets (see the 
ringed entry in Table  3). (b) The interact ions o f  these 
two primaries with those still unassigned are shown in 
columns (Ia) and (IIa)  o f  Table 4. Co lumns  ( I l i a )  and 
(IIIb) show the magni tudes  of  the differences between 
columns (Ia) and (IIa) for the unassigned primaries.  
The values in columns ( I l ia )  and (IIIb) indicate the 
advantage  to be gained by assigning a part icular  
pr imary to the same set as P2 or P3. It is clear in this 
case that  the best selection is to assign Ps to the set 
containing P2 (see 37 in column I l ia) .  (c) The 
interactions of  this chosen pr imary,  Ps, with those 
remaining unassigned are recorded and added to the list 
of  interact ions for the unassigned primaries in column 
(Ib). (d) The new differences in columns (IIIc) and 
( I l ld )  indicate which pr imary  should next be selected 
and so on. Fur ther  primaries are selected as above 

ensuring that  the two sets of  primaries develop evenly 
until all the primaries have been assigned. The 
procedure  is shown in detail in Table 4. 

(3) All possible pair  swaps between primaries in the 
two groups are investigated to determine whether  the 
remaining interact ions can be further reduced. 

(4) The signs of  primaries within a set are then 
permuted until negative interact ions are maximized.  
The procedure  employed is shown in Table  5. All inter- 
act ions between members  of  the same pr imary  set are 
displayed as the two matrices at the head of  the table. 
The sum of  positive and negative interact ions for each 
pr imary  with all the other members  of  its set are then 
computed  and recorded as the first two rows of  
numbers,  (Ia) and (Ib). The differences between these 
two sums for each pr imary  are shown in row (Ic). To  
maximize negative interactions,  a pr imary  is chosen 
where the positive interact ions exceed the negative ones 
by the greatest  amoun t  (see the ringed entries for P12 
and P4 in row Ic). The sign of  this p r imary  is then 
reversed and the sums of  positive and negative inter- 
act ions for the primaries re-computed and recorded as 
in rows (IIa) and (lib). Fur ther  primaries have their  
signs reversed in like manner  until the sums of  negative 
interact ions exceed the sums of  positive interact ions for 
all pr imaries in the two sets (see Table  5). 

(5) Finally,  pr imary  reflexions with the largest total  
interactions remaining,  including at this stage self inter- 
actions in ~l - l ike  terms, are assigned the smallest  
integers in the given sequences (see the last part  o f  
Table 5). 

This procedure  keeps the weighted r.m.s, coefficient 
for a tr iple-phase invariant  approximate ly  equal to the 
r.m.s, average integer of  the magic-integer sequence 

Table 4. The procedure dividing the primary list o f  reflexions into two sets so as to minimize the total interaction 
between primaries in triple-phase invariants 

Columns (I) Columns (II) 
First set of Second set of 
primaries primaries 

Columns (III) 
These values indicate the net interaction saved by placing an unassigned primary 

into a particular set 

(Table of interactions) 

a b a b a b c d 

P2 Ps Pl2 P9 P6 Pit 
Unassigned primaries 
PI 60 22 2 0 0 9 
P4 41 30 
P5 12 
P6 31 0 4 0 
P7 3 17 4 15 30 
P8 42 6 0 28 
P9 0 6 0 
PI0 13 0 6 5 7 0 
Ptl 28 4 29 0 3 
P12 2 0 
PIs 10 0 6 

PJ P4 Pls P8 P7 Pm P2 

65 18 1 7 2 5 
39 
49 37 
42 29 0 14 11 

8 47 8 0 5 
32 20 11 
11 30 14 11 
30 12 6 13 0 0 17 
28 30 28 I1 17 0 
35 8 33 

1 8 

P5 P~ P4 
P3 P2Ps P2P3 

17 1 
2 32 

11 40 
12 35 

10 16 
5 35 

17 29 
0 4 26 

33 41 
9 9 1 

Pll PllPI 
P6 P6 P7 P6 P7 P6 P7 

P9 P9 P8 P9 P8 P9 Ps P9 P8 P9 Ps 
P,2 P,2P,s et2Pts P,2P,3 P,:,Pts P,:,P,s P,2P,3 P,:,P,s 
PsP4 PsP4 PsP4 PsP4 PsP4 PsP4 PsP4 PsP4 
Pz P3 P2 P3 Pz P3 P2 P3 P2 Ps P2 Ps P2 P3 P2 PJ 

I 0 0 0 0 7 7 9 0 0 

36 36 35 50 
31 39 24 24 
4 15 13 

35 49 
23 29 24 37 

3 25 25 36 

7 

6 

30 30 30 30 
33 50 
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Table 5. Permutation of the signs of primary reflexions to maximize negative interactions; assignment of magic 
integers to the primary reflexions 

Positive Positive 
P2 P5 P6 P9 Pi0 P~I Pi2 Pi P3 P4 P7 P8 PI3 

P2 12 0 0 13 2 2 Pi 0 18 0 7 0 
P5 0 0 0 0 0 0 P3 65 33 0 0 1 
P6 31 0 0 7 3 4 P4 0 6 0 20 8 
P9 0 6 0 0 0 0 P7 2 8 47 0 0 
P~0 0 0 0 5 0 0 P8 0 32 0 0 0 
Pll 26 4 0 0 0 29 Pt3 1 0 0 8 11 
P~2 0 0 0 0 6 0 Negative 
Negative 

(la) X(+) 
(lb) X(--) 

(Ic) X(+) X(--) 

P2 P5 P6 P9 Pt0 Pll Pt2 PJ P3 P4 P7 Pa Pl3 

29 12 14 0 20 34 35 E(+) 25 34 79 0 27 9 
57 10 31 11 11 30 6 E(--) 68 111 53 65 43 20 

--28 2 --17 --11 9 4 ( ~  E(+)--E(--)  --43 --77 (~) --65 --16 --I1 

Sign of Pt2isreversed. Sign of P4isreversed. 

27 12 10 0 26 5 6 Z(+) 7 7 53 47 7 1 
59 10 35 11 5 59 35 E( - )  86 138 79 18 63 28 

-32  2 -25 -11 21 -54  -29  Z ( + ) - Z ( - )  

Sign Of Ploisreversed. 

14 12 3 5 5 5 0 X(+) 
72 10 42 6 26 59 41 E( - )  

-58  2 -39  -1  -21 -54  -41 E ( + ) - Z ( - )  

(ila) ~'.(+) 
(llb) X(-) 

(Ilc) ~(+) - Z( - )  

x(~) 
x(-) 

x ( + ) - x ( - )  

x(+) 
x(-) 

x (+) -  x(-) 

Sign of Psisreversed. 

2 10 3 I1 5 9 0 
84 12 42 0 26 55 41 

-82  - 2  -39  11 -21 -46  -41 

Sign of P9 is reversed. 

E(+) 2 4 3 0 0 9 0 
E( - )  84 18 42 11 31 55 41 

E(+)- E( - )  -82  -14 -39  -11 -31 -46  -41 

(x) 
P2 --P5 P6 -P9 -Pt0 PIl --Pi2 

E(+) 2 4 3 0 0 9 0 
E(--) 84 18 42 11 31 55 41 
Z I 0 0 4 0 0 0 0 

Total 86 22 49 11 31 64 41 

Symbol 13x 24x 20x 25x 23x 17x 22x 

r.(+) 
r.(_) 
El 

Total 

-79  -131 -26  29 -56  -27  

Sign of PTisreversed. 

9 15 6 18 7 9 
84 130 126 47 63 20 

-75 -115 -120  -29  -56  -11 

(y) 

Pl P3 -P4 -P7 P~ PI 3 

9 15 6 18 7 9 
84 130 126 47 63 20 

0 0 0 0 0 0 

93 145 132 65 70 29 

Symbol 21y 13y 18y 24y 23y 25y 

used. Given a list of the reflexions contained in the 
determinant and selected origin-defining and enantio- 
morph-fixing phases, a suitable magic-integer represen- 
tation is devised automatically by a computer program 
incorporating the procedures described above. 

Step 2 

The determinant as a function of x and y is then 
computed at intervals 0-01 from 0 < (x,y) < 1. For 
determinants of order 20 or less it is possible to reduce 
the number of points computed by the following 

technique. Initially a grid of only 0.02 in x and y is 
used. This is followed by a local search about points 
with high positive values of the determinant at intervals 
of 0.01 in x and y. This reduces the number of deter- 
minants evaluated from 10 000 to approximately 3500. 
For determinants of larger order the best results have 
been obtained when the full grid has been computed at 
intervals of 0.01, as a better resolution is needed to 
detect the peaks. 

The determinants are evaluated by a computer 
algorithm that performs a Cholesky decomposition of 
the matrix and thus makes full use of the inherent 
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Hermitian symmetry. The time required for computing 
a determinant is proportional to the cube of the order 
and this is the most time-consuming aspect of the whole 
procedure. On a DEC System 10 machine about 0.2 s 
is needed to evaluate one determinant of order 30; 
therefore 35 minutes of computer time are required to 
evaluate an order 30 magic determinant over a grid of 
10 000 points. 

scale using a scale factor, s, computed using the 
formula: 

I Eob sliEcatc I 
matrix 

s = (2) 
~. I Ecalcl 2 

matrix 
A residual is also computed using the formula: 

Steps 3 and 4 

The peaks are examined in order of descending 
magnitude and an attempt is made to centre the peak 
using a nine-point Gaussian ellipsoid approximation 
around the highest grid value (Dawson, 1961). If a 
larger interpolated magnitude than the grid point is 
obtained then this new peak position is used in step 4 
and in the subsequent refinement of phase sets. If not, 
then the peak position is taken as that of the grid point. 

In step 4 the highest peaks - usually between 20 and 
30 in number - are stored and each peak in turn is 
subjected to the next stage of the process -refinement 
of the phase set that it represents. 

R = Zllf°b~l- SIEca~II 

~IEobsl 
(3)  

A weighting scheme given by 

w = 3r 2 -  2r a (4) 

is employed for the reflexions where r = s lEcalcl/IEobsl. 
If r is greater than 1.0, then its reciprocal is used in 
equation (4) to calculate the weight. A weighted 
average error given by 

~. WhA~OhlEh I 
zt og = h (5) 

ZwhlEhl  h 

Refinement of phases 

Phase sets are refined by a method due to Main (1975). 
The technique is based on matrix algebra and simul- 
taneously modifies all phases in the determinants by 
maximizing the largest eigenvalues. For magic deter- 
minants the top two eigenvalues 21, 22 are always maxi- 
mized but further eigenvalues are included if 2, > 
0.52 r Initially only 2~ is maximized, iteration being 
continued until the change in magnitude and phase in 
any component in the corresponding eigenvector is 
below a set limit. The matrix is then reconstructed from 
this eigenvector and its corresponding eigenvalue [see 
equations (34) and (35), Main, 19751. The recon- 
structed matrix is then examined for the consistency of 
the phase indications for reflexions that occur 
repeatedly. A calculated magnitude and phase for such 
a reflexion is obtained by vector summation over all 
appearances in the determinant: 

Eh=(  ~ Ehl/(number of appearances). (1) 
matr ix ] /  

It therefore follows that where conflicting estimates for 
a particular phase are obtained the calculated mag- 
nitude is considerably redlaced. The phases for special 
reflexions are projected on to the appropriate direction 
and the reduced calculated magnitude is noted. 

The observed magnitudes and those calculated from 
the reconstructed matrix are then placed on the same 

calculated after every cycle of refinement has been used 
to check the change in phase error for known 
structures. The weights Wh are also applied to the next 
cycle of matrix refinement, the observed magnitudes 
IEhl being replaced by the values WhlEhl. 

Further cycles of matrix refinement are then per- 
formed with two or more eigenvalues until the absolute 
magnitude of ;t~ increases by less than 1%. When the 
matrix is reconstructed using equations (34) and (35) of 
Main (1975), the eigenvectors are given relative weights 
of 23/2 as this is the theoretical weight derived from the 
maximum-determinant rule (de Rango, 1969; 
Tsoucaris, 1970). To enhance the rate of convergence 
of the eigenvalues a reduced value of E00 o is employed 
during matrix refinement that takes account of the 
limited fraction of the data set that is contained in the 
Karle-Hauptman determinant. The empirical value 
used is given by 

t ~ t  I E h 12 tl/2 
= " 

/ 

Three quantities have been used as figures of merit to 
rank the sets of phases obtained following matrix refine- 
ment. Firstly the value of the determinant Dre r obtained 
for the refined phases should be as large as possible, 
secondly the residual R [equation (3)1 should be as 
small as possible and thirdly ;t~ should be a maximum. 
When the order of the determinant is a significant 
fraction of the number of atoms in the unit cell (N/3 to 
N/2) errors in the observed magnitudes have the effect 
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of  allowing negative eigenvalues to occur  in the matr ix 
constructed with the refined phases.  The magni tude of  
the determinant  can thus  be negative if there is an odd 
number  of  negative eigenvalues and can no longer be 
used as a figure of  merit for the selection of  good phase 
sets. 

The origin and enant iomorph  were defined as follows 

Eh h k 1 Phase ((oh) ° 

2-55 3 5 0 90 
1.73 1 0 5 90 
2-54 0 2 23 180 
1.61 0 1 6 90. 

E x p e r i m e n t a l  r e s u l t s  

This method of  developing large phase sets by magic 
determinants  has been tested on several s tructures in 
space group P212121 and two in P 2  r A detailed 
example is given below for the D 8 determinant  of  litho- 
cholic acid used as an example in the MA GLIN paper  
(Woolfson,  1977). The new magic, integer  represen- 
tation assigned automat ical ly  by the computer  p rog ram 
illustrates the use of  optimized magic-integer sequences 
and correlation procedures.  The list of  peaks  with their 
associated figures of  merits shows how clearly the best 
set of  phases  is indicated (see Table 8). 

The p r imary  set was chosen to contain all reflexions 
with magni tudes  greater  than 1.3. These 13 reflexions 
are represented by two magic-integer sequences of  
lengths 7 and 6 respectively. The correlat ion pro- 
cedures described above result in the ass ignment  of  
magic integers as shown in Table 6. The remaining 
reflexions, the secondary  set, are expressed in magic- 
integer form in Table 7. The determinant  with these 
phase representat ions is shown in Fig. 1. The peaks  
produced for this de terminant  as a function of  x and y 
and the associated figures of  merit are shown in Table 
8. 

Detailed example 

The D s determinant  for lithocholic acid (I) 
(C24H400 3, P2t2~2 l, Z = 4, E 0 = 10-60) conveniently 
illustrates the way  in which magic determinants  are 
computed.  The top row was selected by method 2. The 
figures and tables used earlier in this paper  to clarify the 
correlation processes necessary for ass ignment  of  
magic integers have been taken f rom this determinant .  

Me 

OH 
(I) 

Table 

IEhl 

2.28 
3.11 
1.31 
1.37 
! .35 
2.16 
1.65 

6. Magic-integer representation of the 13 
reflexions in the primary set 

h k / Symbol I Ehl h k 1 Symbol 

2 4 11 13x 2.99 2 4 I 13y 
1 1 12 17x 2.01 1 1 11 -18y 
1 4 6 20x 2.15 0 0 10 21y 
3 3 11 -22x 2-77 2 3 17 23y 
2 3 5 -23x  2.38 2 1 6 -24y 
1 1 1 -24x 1.78 1 0 6 25y 
1 2 17 -25x 

Tests on known structures 

Cholest-4-en-3-one (steron)(II) (Sheldrick, Oeser,  
Cai ra ,  Nass imbeni  & Paupti t ,  1976), C27H440, space 
group P 2  t, a --- 14.634, b = 7 .862,  c -- 10.674 A, fl = 
105.09 °,  Z -- 2, N -- 56, E000 = 9 .21,  2501Ehl > 
1-319. 

0.0,0 10-6 0.0.1-0 2-2 "~.4.1"I 2-3 1.1,1"T 2 .01{ .0 ,5  1.7 2.4.1 3"0 0 . I . 6  1"6 1.1.12 3.1 

0 -21y 180 ÷ 13x -18y 270 -13y 90 i 17x 

0 ,0 .010-6  2,4.1 3 0  1.1,{ 2.2 1.0.5 2.2 2 . 4 , 1 1 2 . 3 0 , I .  16 0.81.1. 22 0.4 

0 180.13y -24x  90  -13x -10Y. 180 17x * 21y 

0.0.0 10.6 3.5.0 2-6 I. 4, 6 1"3 0,0.I 2 1-2 2.5. 172.8 3,3.23 I-'I 

0 90  -20x  -13x.13y.18C -23y 180 * 4x 

0,0.0 10"6 2.1.6 2-4 3,5.12 1"3 {,2. 17 1-7 0.2.23 2-5 

0 180 + 24 Y 5y 180 . 25X 180 I 
0,0,0 10.6 1,4,6 1.3r1111 2.0 2.1.17 1.2 

0 160 -20X -18y -24Y 

0,0 ,010.6  2 . 3 , 5 1 - 4  3,,3,1'I 1.4-' 

0 23x 22x 

0.0.0 10"6 1.0.6 1-8 

0 25y 

0.0.0 10-6 

0 

Fig. 1. Karle-Hauptman determinant of order 8 for lithocholic 
acid. Each element shows the indices, value of fEhf and 
representation of phase in magic-integer form or in degrees. 

Table 7. Magic-integer representation of  the six reflexions in the secondary set 

1.28 tg(3, 5, 12) "-, ~0(2, 4, 1)(13)) + ~o(l, 1, 1 l)(--18y) --Sy 
1.18 ~o(0,0, 12)~_q~(2,4,11)(--13x) +tp(2,4, 1)(--13y+ 180 °) - 1 3 x - 1 3 y +  180 ° 
1.15 ~0(2, I, 17) ___ ~0(0, 2, 23)(180 °) + ~0(2, 1, 6 ) ( - 2 4 y -  180 °) -24y 
1.05 ~o(3,3,23)~/~(2,4, ll)(13x) + 0~(1, [, 12)(-17x+ 180 °) - 4 x +  180 ° 
0.84 q~(0, 1, 16) -~ ~0(5, 4, | ) ( 13y -  180 °) + (0(2, 3, 17)(-23y) -10y + 180 ° 
0.40 tp(l, I, 22) --, t0(O, O, lO)(21y) + ~p(l, I, 12)(17x) 17x + 21y 

IEhl h k l h k ! h k l Symbol 
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Table 8. Lists of  peaks and associated figures of  merit for  the lithocholic acid D s determinant 

D (× 10 -8) Atpg Atp~ D (x 10 -8) 
x y (initial) (initial) (final) R (%) 2~ (x 10 -4) (refined) 

10 21 0.6887 85-4 ° 83.3 ° 28.4 0.1335 0.7242 
29 3 0-6893 52.0 56- 1 28.4 0.1370 0.7572 
56 83 0.6927 79.5 81-0 29.5 0.1339 0-7521 
84 1 0.6747 76.7 80.6 35.6 0.1325 0.7224 
54 73 0-6692 47.8 61.5 26.4 0.1384 0-7651 
83 41 0.6702 65.8 62.8 38.9 0.1262 0.7102 

1 23 0.6606 75.5 79.4 32.1 0.1330 0-7286 
1 85 0-6625 81.5 81.0 32.5 0.1311 0.7189 

42 8 0-6653 71.8 80.9 34.3 0.1289 0-7267 
87 33 0-6674 83.6 95-5 39.5 0.1253 0.6607 
10 59 0-6574 74.9 78.0 24.0 0.1370 0.7381 
24 35 0-6659 27.2 22.8 24.7 0-1394 0.7657 
56 6 0-6528 77.1 73.5 33.3 0.1300 0.7100 
81 54 0-6571 86.5 91-4 41.1 0.1265 0-7139 
82 25 0-6487 79.6 73.1 27.0 0.1375 0.7633 
36 52 0.6446 66.5 63.2 36.5 0- 1270 0.7112 
52 53 0.6457 58.6 62-3 42.4 0.1234 0.6775 
56 22 0.6427 85.1 82.2 30.7 0-1378 0.7519 
60 52 0.6451 60.7 62-0 29.7 0-1318 0.7233 
82 3 0.6462 69.9 60-6 37.8 0.1268 0.7189 

Table 9. Magic-determinant trials for steron 

Order ( Eooo)reci 

Magic integers Known 
r.m.s, integer reflexions Best results for 

Number Number Sequence in triple-phase (origin + all IEhl > 1-3 Number of 
of unique of length invariants enantiomorph, ~ Numberwith peaks 

Eh IEbl _> 1.3 x y x y others) Atp~' w > 0.50 selected 

8 3.45 19 18 5 5 17-16 16-60 4,1 
Mostsolutions are equivalent with verylittle differenceinthethree figures ofmerit D,~ $m,xand R. 

20 7.89 72 51 

12.3 18/18 

Position of 
Position of D,~ r 2m, x 

Dinlt in in ranking 
ranking order for 
order chosen peak 

for chosen after 
peak refinement 

7 7 19.94 18.96 4,1 12.6 50/51 22 5 (5),2 
12 12 20.81 20-50 4,1 13.1 50/51 21 17 (6),2 
12 12 19.43 20.81 3,1 15.2 51/51 20 16 (7),1 

(enantiomorph 
not fixed) 

20-21 4,1 22.4 66/68 20 4 (-),1 
21-93 4,1 10.5 66/68 20 10 (-),5 

27.4 66/68 19 (-),1 
21.93 4,1 11.3 66/68 20 10 (-),1 

R and 2~ are very discriminating; D,a is less than Dlnlt by a factor of 103. 

30 9.21 133 68 10 9 22.15 
12 12 20-92 

(new weighting scheme) 12 12 20.92 

At this order of determinant for this small structure, the determinant value is not a good figure of merit. 

(ii) 

A Karle-Hauptman determinant for this structure 
was selected by Method 2. An initial determinant of 
order 500 was constructed using reflexions for which 
sin 0/2 < 0.45 A -1. Rows and columns were then 
eliminated down to order 250. A second determinant of 
order 250 was then constructed using reflexions that 
occurred at least 10 times in the order 250 determinant 
produced in the first step. Rows and columns were then 

eliminated down to order 100. The top row of this 
determinant up to order 30 is as follows: 

!i i, 933, 63i, 261, 960, ~0~, 2-62, 631, 202, l i l, 
935, 262, 201, 338, 736, 403, 430, 232, 737, 431, 
261,201,403, 11,3,3, 306, ~)J5, 43i, 304, 23:2. 

201 360 ° 

Origin-defining reflexions 15,0,~, 360 

I I I  19 
Enantiomorph fixed by 933 225 

Permuted phase 202 180, 360. 

The magic determinant was evaluated at orders 8, 20 
and 30. The results obtained are shown in Table 9. The 
best sets of phases were extended using the tangent- 
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Order (E0o~)re d 

Table 10. Magic-determinant trials for estriol 

Magic integers Known 
r.m.s, integer reflexions Best results for 

Number Number Sequence in triple-phase (origin + all IEhl _> 1-3 Number of  
of unique of length invariants enantiomorph, ~ Numberwith peaks 

E h IEhl > 1.3 x y x y others) A~0~ w _> 0.50 selected 

Position of  
Position of  D,e ~ 2,,ax 

Dlnlt in in ranking 
ranking order for 

order chosen peak 
for chosen after 

peak refinement 

8 2.65 19 17 7 6 16.83 18.16 3,1 28-5 17/17 20 6 (-) , (-)  

Most solutions are equivalent with very little difference in the three figures of merit, lnvariants in the matrix are close to 0 ° except for those linking the 
reflexions 2,10,1 and 0,10, I with other reflexions in the matrix. 

20 5.79 73 46 12 12 19.46 19.75 3,1 40-0 46/46 21 8 6,1 

The figures of  merit are more discriminating at this order of determinant. 

30 8.04 152 87 12 12 21.37 21-87 3,1 41.6 82/87 20 20 5,1 
37.0 81/87 10 3,3 

[ A___~z~ = 0 ° 41/42~ 
FASTAN phase development of 81 phases { zt~0, = 44.0 ° 32/42 / atoms located in the E map. 

[ ~-~h = 36.9 ° 30/42 

formula part of the MULTAN system and E maps 
calculated using the resulting phases. About half the 
steron molecule could be located from such E maps. 
When MULTAN itself was used in the normal way 
with a convergence map based on origin + enantio- 
morph + two other reflexions, the set with the highest 
combined figure of merit out of the twelve sets 
produced an E map with 25 out of the 28 atoms 
correctly located. For this structure the small value of 
N (56) produces negative values for the determinants at 
order 30 even for refined sets of phases. The value of 
the determinant cannot therefore be used as a figure of 
merit in this case. 

Estriol (III) (Hauptman, Fisher, Hancock & Norton, 
1969), C18H2403, space group P21, a = 9-261, b = 
23.025, c = 7.561 A, fl = 111.00 °, Z = 4, N = 84, 
E0o0 = 10.61,4121Ehl > 1.36. 

OH 

Ho ( | I I )  

A Karle-Hauptman determinant for this structure 
was selected by method 2. An initial determinant of 
order 500 was constructed using reflexions for which 
sin 0/2 < 0.42 A -t. Rows and columns were then 
eliminated down to order 250. A second determinant of 
order 250 was then constructed using reflexions that 
occurred at least 12 times in the order 250 determinant 
produced in the first step. Rows and columns were then 
eliminated down to order 100. The top row of this 
determinant up to order 30 is as follows: 

133, [33, 172, 323,, 372,_2,10,[, 200, 0,10,_i_, i~2_, 
0,1-6,!, 133.2, 290, 133, 1,13,4,24_5,411,211, 
045, 256, 324, 246, 246, 411,211, 124, 124, 1,18,2, 
1,~,:~. 

There are very few hOl reflexions in this structure as 
a result of the length of the b axis. Origin and enantio- 
morph were therefore defined using general reflexions. 

( 133 130 ° 

Origin and enantiomorph definition / 323, 123 

~045 333 

Permuted phase 200 180, 360. 

Magic determinants were evaluated at orders 8, 20 
and 30. The results obtained are shown in Table 10. 
The best sets of phases were extended using the 
tangent-formula part of the MULTAN system and E 
maps calculated using the resulting phase sets. 32 out 
of the 42 atoms could be located from E maps 
generated using the approximate phases from the order 
30 determinant. (When the correct values for the 
phases in the order 30 determinant were used as the 
basis for tangent-formula phase development then 41 
out of 42 atoms were correctly located in the resulting 
E map.) 

Cinobufagin (IV) (Declercq, Germain & King, 
1977), C 2 6 H 3 4 0 6 ,  space group P212~2~, a -- 7.663, b = 
15.900, c = 19.291 A, Z = 4, N = 128, E000 = 12.90, 
3201Ehl > 1.41. 

o 

o 

o 

o - - c  - - M e  
Me 

HO (IV) 

Method 1 was used to select an order 25 Karle-  
Hauptman determinant. A MULTAN convergence 
map on to six reflexions was used to indicate which 



880 THE APPLICATION OF PHASE RELATIONSHIPS TO COMPLEX STRUCTURES.  XV 

Table 11. Magic-determinant trials for cinobufagin 

Order (Eooe)re d 

15 (12-90) 

(12.90) 
(12.90) 

3.51 
3.51 

25 (12.90) 

30 

Magic integers Known 
r.m.s, integer reflexions Best results for 

Number Number Sequence in triple-phase (origin all IEil _> 1.3 Number of 
of unique of length invariants + ~ Number with peaks 

E h IEbl _> 1.3 x y x y enantiomorph) A~o~' w > 0-50 selected 

9 9 22-70 21.15 4 30-2 39/42 
(only one eigenvalue used, all three figures of merit are discriminating) 

40/42 
39/42 
38/42 
38/42 

65 42 39 

7.67 12 12 22.81 23.18 

7.67 (new correlation 8 8 24.18 26-01 
method) 

(12.90) 94 40 9 9 31.76 22.68 
8.92 12 12 21-09 25.87 

(several other comparable solutions, some on other origins) 
8-92 7 7 23-64 22-53 

8.92 12 12 25.19 24-31 

(two eigenvalues used, relative weight of eigenvalue = 23/7) 29.2 
(three eigenvalues used) 28.0 

27.8 
(correct scaling of observed and calculated IE~.I values) 27-9 

The above results compare different refinement procedures for the same initial peak in 

155 73 9 9 22-85 24.20 44 42-9 
50.2 
46.3 

4 41-6 
45.8 

4 43.6 

Position of 
Position of Dra , 2max 

Dl,,t in in ranking 
ranking order for 

order chosen peak 
for chosen after 

peak refinement 

35 5,1 

39 35 3,1 
39 35 2,1 
39 35 6,4 
39 35 5,3 

the determinant map. 

67/73 22 19 9,6 
71/73 4 3,3 
72/73 1 2,2 
65/73 21 6 I, I 
67/73 10 2,2 
69/73 21 14 1,1 

4 33.8 35/40 15 15 4,4 
4 52-4 35/40 22 1 1,10 

50.8 36/40 4 2,1 
33.5 31/40 9 3,9 

4 52.5 37/40 20 20 2,1 
53.1 32/40 5 1,2 

4 49.8 32/40 22 7 6,5 
52-2 36/40 16 2,1 

reflexions might be suitable for inclusion in the top row 
of the determinant. The top row of this determinant up 
to order 25 is: 

0,_12,1, 5,12,0, i ,15,0 ,  4,7,15, 4,5,14, i ,13 , i ,  1i2, 
112, 112, 0,12,1, 411 ,  301, 411, 30i, 501, 50i, 
2,7,13, 1,_15,2, 1,15,2, 4,13,7, 1,13,1, 4,13,2, 
2,13,4, 224. 

Magic determinants were evaluated at orders 15 and 
25 for the above top row. 

Origin and enantiomorph for the order 25 determi- 
nant were defined as follows: 

Origin-defining reflexions 

Enantiomorph fixed by 

0,12, 1 360 ° 

5,12, 0 90 

1,15, 0 270 

4, 5,14 135. 

Another Karle-Hauptman determinant was selected 
by method 2. An initial determinant of  order 500 was 
constructed using reflexions for which sin 0/2 < 0-45 
A -~. Rows and columns were then eliminated down to 
order 100. A second determinant of order 500 was then 
constructed using reflexions that occurred at least three 
times in the order 100 determinant produced in the first 
step. Rows and columns were then eliminated down to 
order 100. The top row of  this determinant up to order 

30 is as follows: 

i ,13,1,  zJll, 301, 076, i ,13,1,  411,   9i: 1_,13,3, 
1,13,3, 200, 200, 1,13, i,_ 1,13,1, 112, 112, 411, 112, 
1,_1_3,3,_1,13t3, 112, 411, 301, 301, 0,12, i, 0,12,1, 
112, 112, 211, 21i. 

Origin and enantiomorph for the order 30 determi- 
nant were defined as follows: 

5,12,0 90 ° 
Origin-defining reflexions 301 90 

076 90 
Enantiomorph fixed by l, 13,1 225. 

Magic determinants were evaluated at order 30 for 
the above top row. The results for cinobufagin deter- 
minants are shown in Table 11. The best sets of phases 
were extended using the tangent-formula part of the 
MULTAN system and E maps calculated using the 
resulting phase sets. Only a small number of atoms 
could be located from E maps generated using the 
approximate phases from magic determinants at orders 
25 and 30. In both cases when correct phase values 
were used as the basis for the tangent-formula phase 
development all the atoms were correctly located in the 
resulting E maps. Two hypotheses may be put forward 
as to why the sets of magic-determinant phases are not 
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good enough to provide a starting set from which a 
solution can be obtained. Firstly, the determinants 
themselves do not contain a good representative subset 
of the complete data set. Secondly, the large number of 
special reflexions included lead to sets of phases that 
are very close to a centrosymmetric structure and 
cannot be developed to a noncentrosymmetric phase 
set by the tangent formula. 

Ergocalciferol (V) (Hull, Leban, Main, White & 
Woolfson, 1976), C28H440, space group P212121, a = 
21.695, b = 6.857, c = 35.320 ,/k, Z = 8, Eoo o = 16-93, 
4121Ehl > 1.43, N = 232. 

J 

(a) Method 1 was used to select an order 8 deter- 
minant. A M U L T A N  convergence map on to six 
reflexions was used to indicate which reflexions might 
be suitable for inclusion in the top row of the deter- 
minant. The top row of this order 8 determinant is as 
follows: 

40i,  7,0,29, 013, 2,1,29, 6,1,28, 6,1,30, 4i2. 

401 90 ° 

Origin-defining reflexions 013 90 

7,0,29 90 

Enantiomorph fixed by 2,1,29 315. 

(b) Method 2 was used to select an order 14 deter- 
minant. In this case [IEhl 2 -- 11 was used as a figure of 
merit in the final elimination of rows and columns from 
order 100. The top row of this determinant is as 
follows: 

40i,  13i, 0i3,  035, 514, 2,0i, 530, 401, 0i3,  131, 
2,01,033,514. 

Origin-defining reflexions 

401 90 ° 

013 90 

• 530 90 

Enantiomorph fixed by 527 135. 

(c) Method 2 was used to select this determinant. An 
initial determinant of order 500 was constructed and 
rows and columns were eliminated down to order 100. 
The determinant was not set up a second time. The top 

row of this determinant up to order 29 is: 

310, i l i ,  2,1,14, 503, 5i0, i l i ,  020 ,O i0 , )  i 1, 111, 
2_,1,14, 503, 510, 5i0,  503, 503, 111, I11, 3,0,15, 
3,0,15, I l l ,  i i l ,  5,0,15, 3,0,15, 2,1,14, 2,1,14, 
401, 2,01. 

I 
401 90 ° 

Origin-defining reflexions 510 90 

013 90 

Enantiomorph fixed by 3,0,15 270. 

Magic determinants were evaluated at orders 19, 25 
and 29. 

(d) This determinant was also selected by method 2. 
An initial determinant of order 1500 was constructed 
using reflexions for which sin 0/2 < 0.42 /~-~. Rows 
and columns were then eliminated down to order 750. 
A second determinant of order 750 was then construc- 
ted using reflexions that occurred at least 40 times in 
the order 750 determinant produced in the first step. 
Rows and columns were then eliminated down to order 
150. The top row of this determinant up to order 30 is 
as follows: 

013_, 510, 3,fi, 17, 401, 3, i ,13,503,  0i_3, 5i0, 3,1_, l--if, 
5_03,03_3,033,401, 3,1,13, 1,1,14, 1,1,14, 401, 111, 
111, 312, 312, 401, 0,1,16, 0,1,16, 6,0,15, 6,0,15, 
5,1,13, 3, i, 13, 0,2,1-4. 

Origin-defining reflexions 

Enantiomorph fixed by 

Permuted phase 

401 90 ° 

510 90 

013 90 

3,1,17 135 

6,0,30 360, 180. 

Ergocalciferol is an extremely difficult structure to 
solve. No set of approximate phases from any of the 
above magic determinants has yielded interpretable E 
maps following extension of the phase set by the 
tangent formula. Even when the exact phases for the 
magic-determinant phases are used no recognizable 
fragments are obtained in the E maps. A combination 
of the contents of determinants (a) and (b) given exact 
phases and used as a starting set for M U L T A N  
produced an E map in which 38 out of the 58 atoms 
were correctly located (A~p h = 44.4 ° for 412Eh's). 

The results obtained for all the above magic deter- 
minants are shown in Table 12. 

Conclusions 

Several important improvements to magic-integer 
methods of phase determination have been made as a 
result of this work. The new optimized magic-integer 
sequences, described in paper XI of this series, have 
been used with success enabling large primary sets to 
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Table 12. Magic-determinant trials for ergocalciferol 

Magic integers Known 
r.m.s, integer reflexions Best results for 

Number Number Sequence in triple-phase (origin + all IEhl _> 1.3 Number of 
of unique of length invariants enantiomorph, Number with peaks 

E h IEhl > 1.3 x y x y others) Atp~ w > 0.50 selected 

5 5 4,0 16.1 20/20 
3 3 4.62 3-91 4,0 16.3 20/20 
8 8 18.57 15-22 4,0 22.25 20/20 

5 5 4,0 43.2 22/22 
7 7 4,0 33.9 21/22 
5 5 18.89 18-84 4,0 34.9 20/22 20 16 19,5 

5 5 22-72 19.18 4,0 45.0 21/23 17 5 4,3 
10 10 26.55 24.0 4,0 45.0 21/23 17 2 2,1 

9 9 26-16 21.56 4,0 50.1 28/30 15 2 2,1 

Several other peaks refine to d~0h - 50 ° for 30 phases. 

9 25-45 22.39 4,0 49.8 33/35 26 22 1,1 
12 23-01 21-73 4,0 47.1 25/35 22 5 4,1 
7 22.52 23.34 4,0 46.4 31/35 20 5 1,1 

12 23.58 23.43 4,0 42.6 21/35 20 3 5,6 

12 26.63 25.51 4,1 47.1 53/68 20 7 1,1 

Order (Eooo),e d 

8 (16.93) 23 20 
4-12 
4.12 

14 (16.93) 36 22 
(16-93) 

6-0 

19 (16-93) 44 23 

25 (16.93) 61 30 

29 (16-93) 77 35 9 
10-61 12 
10.61 7 
10-61 12 

30 9-96 156 68 12 

Position of 
Position of D,,p 2.m, x 

Dlnlt in in ranking 
ranking order for 
order chosen peak 

for chosen after 
peak refinement 

(Many peaks give the same 
solution after refinement) 

be represented efficiently by comparatively small 
integers. To enhance still further the power of magic 
integers, several correlation procedures were investi- 
gated in an attempt to minimize the occurrence of large 
coefficients in triple-phase invariants represented by 
magic integers. The most powerful method found to 
date is the one described above under 'Step 1'. 

In general, the values of the Karle-Hauptman deter- 
minants used in this work have been found to be very 
discriminating as figures of merit. The results presented 
in Tables 8-12 indicate that it is only necessary to 
consider the top 20-30 peaks in the determinant map in 
order to obtain a satisfactory set of phases. When the 
determinant is used as a figure of merit to rank the 
phase sets following matrix refinement it is even more 
discriminating and the best sets of phases are usually 
found in the top six values. However, when the order of 
the determinant, m, is ~_N/3 to N/2, the presence of 
negative eigenvalues in the eigenvalue spectrum pre- 
cludes the use of the determinant values for this 
purpose. This is most noticeable with small structures, 
e.g. steron, and under these circumstances 2ma x and R 
must be used to rank the phase sets. It can be seen from 
Tables 8-12 that 2m, X is in fact as discriminating a 
figure of merit for ranking the refined phase sets as is 
the determinant value and may therefore be used 
instead of the determinant values where necessary. 

The sets of phases obtained from magic deter- 
minants for the test structures appear fairly good until 
the extension of the phase sets using FASTAN is 
examined. Early experiments with lithocholic acid data 
showed that it was easy to extend a phase set by 
FASTAN and thus solve the structure. The detailed 
results for the four test structures show that this early 

promise has not been maintained. The main cause for 
these disappointing results appears to lie with the 
nature of the matrix of structure factors used to derive 
the starting sets. As mentioned above, it is extremely 
difficult to select a matrix of structure factors by a 
systematic process so as to include reflexions with large 
magnitudes occurring repeatedly. In addition the 
elimination process encourages the selection of reflex- 
ions that represent only a sub-unit of the structure. The 
effect of this is clearly seen in the case of steron where a 
phase set, developed by FASTAN from 66 magnitudes 
with Atp~' = 11.3 o, showed only ~½ the molecule in the 
resulting E map. In this case, the starting set of 66 
phases is too close to a centrosymmetric sub-unit and 
the final E map shows a centrosymmetric pattern of 
peaks. In an effort to solve this problem, work is 
currently in progress on the production of more suitable 
matrices for use as magic determinants. 

A major drawback to the determinant approach is 
the large time taken to produce a determinant map, 
especially when compared with the time required to 
produce a ~, map (White & Woolfson, 1975) using 
FFT's in more straightforward applications of the 
magic-integer approach. Since the time taken for deter- 
minant evaluation is proportional to m 3, there is a 
practical upper limit of m = 30 for the computing 
facilities currently available to the authors. This is 
unfortunate since for large structures it is desirable to 
have as large a starting set as possible and matrices of 
higher order would enable more reflexions to be 
included in the matrix. However, for these larger 
matrices some triple-phase invariants involving the 
large magnitudes do not occur in the matrix and the 
proportion increases with the number of large mag- 
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nitudes in the matrix. This extra information can only 
be used if a function based on a Fourier summation is 
employed instead of a determinant to derive positions in 
(x,y) space. Tests are now being made using a 2D F F T  
summation that includes contributions from these 
omitted triple-phase invariants. 

In conclusion, although the value of a Kar le -  
Hauptman determinant is a discriminating figure of 
merit for selecting good phase sets, when used in 
conjunction with magic integers in a phase-deter- 
mining role, it is not of sufficient power to justify the 
amount of computer time required to evaluate the very 
large number of determinants involved. 

Two of us (MMW and DJT) gratefully acknowledge 
the assistance of the Science Research Council for 
sponsorship of a project to develop the use of the 
magic-integer concept. 
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With triple-phase relationships treated as linear equations it is possible to refine a set of phases from given 
initial values. Phases so obtained are better than those found by refining to self-consistency with the tangent 
formula. An investigation of the radius of convergence of the least-squares refinement process showed that a 
substantially correct solution may often be found even starting with random phases. Systems containing up to 
300 phases have been investigated and the results and their implications are discussed. It is concluded that the 
random approach can, at the very least, be used to obtain 70--100 phases as a good starting point for phase 
development. There is also the possibility of obtaining a sufficient number of phases directly to define a 
reasonably complex structure, especially with a computer augmented by an array processor. A problem 
which can arise with linear equations, as with the tangent formula, is that the phases obtained do not 
adequately define the enantiomorph and give an E map with a pseudo centre of symmetry. Two methods of 
overcoming this problem are described. 
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